

Book of Abstracts 7th International Symposium on Irrigation of Horticultural Crops

Geisenheim, Germany 16th to 20th of July 2012

7 th International Symposium on Irr	rigation of Horticultural Crops
--	---------------------------------

	Section 5: Remote Sensing	
p60	M. Cosic, R. Stricevic , N. Djurovi, I. Lukic and D. Zagorac	Influence of Irrigation and Application of Kaolin on Canopy Temperature of Peppers Measured by Infrared Thermography
p61	F. Ferrer-Alegre , E. Bastidas-Obando, H. Brotons-Briva and W. Bastiaanssen	On-Site Assessment of Actual Evapotranspiration in Irrigated Fields for Operational Irrigation Scheduling Combining Information from Satellite Images and Field Measurements
p62	C. Sirca, S. Marras, P. Zara, A. Arca, P. Duce and D. Spano	Carbon Footprint Estimation of the Wine Production Process
p63	A. H. de C. Teixeira , F. B. T. Hernandez and H. L. Lopes	Up Scaling Vineyard Water Requirements in the Low- Middle São Francisco River Basin (Brazil)
p64	Susanne Tittmann, O. Löhnertz and M. Stoll	Non-Invasive Techniques to Determine Grapevine Performance (<i>Vitis Vinifera</i> L., cv. Müller-Thurgau) under Different Water and Nitrogen Regimes
p65	W. Treder, K. Klamkowski, W. Rudnicki and K. Wójcik	Evaluation of Quality of Rainfall Forecasting using COAMPS and UM Models
	Section 6: Water/Carbon Footprint and Socio Economic Consequences	
p66	Bartolomeo Dichio, A. M. Palese, A. Sofo and V. Xylogiannis	The Water Footprint of an Irrigated Olive Orchard Cultivated under Semi-Arid Conditions
p67	Prakashkumar Narasimhamurthy	AHT Growstation Simplified and Cost Effective Method to Save Irrigation Water, Controlling Root Zone Temperature to Manipulate Vegetative and Generative Growth within AHT (Aeration & Heat Transfer)
p68	D. Neilsen , T. Van der Gulik, B. Taylor, A. Cannon, S. Smith and I. Losso	Risks to Future Agricultural Water Supply in the Okanagan Basin, British Columbia (Canada)
p69	L.G. Santesteban , C. Miranda, I. Urretavizcaya and J.B. Royo	Carbon Stable Isotope Composition of Whole Berries as a Tool to Estimate Water Status in Grapevines at Several Scales

Section 6: Water / carbon footprint and socio-economic consequences:

The Water Footprint of an Irrigated Olive Orchard Cultivated Under Semi-Arid Conditions

Bartolomeo Dichio, Assunta Maria Palese, Adriano Sofo, Vaghelis Xylogiannis

Dipartimento di Scienze dei Sistemi Colturali, Forestali e dell'Ambiente – Università degli Studi della Basilicata – Viale dell'Ateneo Lucano, 10 – 85100 – Potenza (Italy)

*Corresponding author: Telephone:0039 3293606260 Fax: 0039 0971205378 e-mail: bartolomeo.dichio@unibas.it

Keywords: water management; water scarcity; water use efficiency; virtual water

A conscious use of water in agriculture is needed because of the limited character of such resource. On the other hand, under semi-arid conditions water availability represents the environmental limiting factor which can strongly affect crop productivity.

The water footprint is an indicator of water consumption that looks at both direct and indirect water use of a consumer or producer. Such indicator can be an useful tool to plan appropriate irrigation water management strategies within a territory.

Olive tree is the main fruit crop in Mediterranean Basin. Thought it is cultivated mainly under rainfed conditions an increasing trend of the irrigated olive surface is occurring. This study provides an assessment of the water footprint of an irrigated olive orchard grown under semi-arid conditions. Particularly, the orchard management includes the recycling of urban wastewater and its distribution by drip irrigation and the use of soil management techniques (cover crops, recycle of pruning material) aimed to preserve soil quality and increase water storage capacity of the soil. A rainfed orchard with similar characteristics is taken as reference. The study reports 4-year average data. Crop parameters, meteorological data, reference and crop evapotranspiration, soil water content, irrigation volumes are recorded in the different experimental years. The water footprint of olives, expressed as m³/ton is evaluated taking into account its green, blue and grey components. Some remarks on the practical implications of the results are also reported.